Here’s my attempt at solving the puzzle you provide – I believe the following procedure will yield a list of approximate values for the E-Coli bacterium. (It’d take a research team and several years, but in principle it is possible.)
For each protein, create a general list of its effects on the biochemical environment within the cell.
Collect each effect that is redundantly produced by several distinct proteins simultaneously (say, 10+). This gives us a rough estimate of the bacteria’s values, though it is not yet determined which are more instrumental and which are more terminal in nature.
Organize the list into a graph that links properties by cause and effect. (Example: Higher NaCl concentration makes the cell more hypertonic relative to the environment.)
For each biochemical condition on the chart, evaluate its causes and its effects. Conditions with many identifiable causes but few identifiable effects are more likely to be terminal goals than conditions with few identifiable causes but many identifiable effects. In this way, a rough hierarchy can be determined between terminal-ish goals and instrumental-ish goals.
Potential issues with this plan:
This procedure is ill-equipped to keep up with mutations in the E-Coli culture. It takes much longer to create a plan for a particular bacteria culture than it does for the culture to spontaneously change in significant ways.
Some E-Coli values may not be detectible in a lab environment. For example, if E-Coli cells evolved to excrete chemicals that promote growth of other, potentially symbiotic cells, values associated with that behavior will likely go undetected.
In expressing this plan, I make the assumption that the behavior of the E-Coli cell reflects its values. This presents a theoretical limit on how precisely we can specify the cell’s values, as we are not equipped to detect where behavior and volition diverge.
Here’s my attempt at solving the puzzle you provide – I believe the following procedure will yield a list of approximate values for the E-Coli bacterium. (It’d take a research team and several years, but in principle it is possible.)
Isolate each distinct protein present in E-Coli individually. (The research I found (https://www.pnas.org/content/100/16/9232, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4332353/) puts the number of different proteins in E-Coli at 1-4 thousand, which makes this difficult but not completely infeasible.)
For each protein, create a general list of its effects on the biochemical environment within the cell.
Collect each effect that is redundantly produced by several distinct proteins simultaneously (say, 10+). This gives us a rough estimate of the bacteria’s values, though it is not yet determined which are more instrumental and which are more terminal in nature.
Organize the list into a graph that links properties by cause and effect. (Example: Higher NaCl concentration makes the cell more hypertonic relative to the environment.)
For each biochemical condition on the chart, evaluate its causes and its effects. Conditions with many identifiable causes but few identifiable effects are more likely to be terminal goals than conditions with few identifiable causes but many identifiable effects. In this way, a rough hierarchy can be determined between terminal-ish goals and instrumental-ish goals.
Potential issues with this plan:
This procedure is ill-equipped to keep up with mutations in the E-Coli culture. It takes much longer to create a plan for a particular bacteria culture than it does for the culture to spontaneously change in significant ways.
Some E-Coli values may not be detectible in a lab environment. For example, if E-Coli cells evolved to excrete chemicals that promote growth of other, potentially symbiotic cells, values associated with that behavior will likely go undetected.
In expressing this plan, I make the assumption that the behavior of the E-Coli cell reflects its values. This presents a theoretical limit on how precisely we can specify the cell’s values, as we are not equipped to detect where behavior and volition diverge.