Glad there’s excitement on this subject. I’m currently coordinating an open source project whose goal is to do a full simulation of the c. elegans (http://openworm.googlecode.com). More on that in a minute.
If you are surveying past c. elegans simulation efforts, you should be sure not to leave out the following:
A Biologically Accurate 3D Model of the Locomotion of Caenorhabditis Elegans, Roger Mailler, U. Tulsa
http://j.mp/toeAR8
C. Elegans Locomotion: An integrated Approach—Jordan Boyle, U. Leeds
http://j.mp/fqKPEw
One of the comments mentioned Andrey Palyanov’s mechanical model of the c. elegans. He is part of our group and is currently focused on moving to a soft-body simulation framework rather than the rigid one they created here: http://www.youtube.com/watch?feature=player_embedded&v=3uV3yTmUlgo Our first goal is to combine the neuronal model with this physical model in order to go beyond the biophysical realism that has already been done in previous studies. The physical model will then serve as the “read out” to make sure that the neurons are doing appropriate things.
We have regular meetings on Google+ Hangout. If you want to help, we can surely find a way to include you. If you are interested, please let us know and we’ll loop you in.
Hi all,
Glad there’s excitement on this subject. I’m currently coordinating an open source project whose goal is to do a full simulation of the c. elegans (http://openworm.googlecode.com). More on that in a minute.
If you are surveying past c. elegans simulation efforts, you should be sure not to leave out the following:
A Biologically Accurate 3D Model of the Locomotion of Caenorhabditis Elegans, Roger Mailler, U. Tulsa http://j.mp/toeAR8
C. Elegans Locomotion: An integrated Approach—Jordan Boyle, U. Leeds http://j.mp/fqKPEw
Back to Open Worm. We’ve just published a structural model of all 302 neurons (http://code.google.com/p/openworm/wiki/CElegansNeuroML) represented as NeuroML (http://neuroml.org). NeuroML allows the representation of multi-compartmental models of neurons (http://en.wikipedia.org/wiki/Biological_neuron_models#Compartmental_models). We are using this as a foundation to overlay the c. elegans connectivity graph and then add as much as we can find about the biophysics of the neurons. We believe this represents the first open source attempt to reverse-engineer the c. elegans connectome.
One of the comments mentioned Andrey Palyanov’s mechanical model of the c. elegans. He is part of our group and is currently focused on moving to a soft-body simulation framework rather than the rigid one they created here: http://www.youtube.com/watch?feature=player_embedded&v=3uV3yTmUlgo Our first goal is to combine the neuronal model with this physical model in order to go beyond the biophysical realism that has already been done in previous studies. The physical model will then serve as the “read out” to make sure that the neurons are doing appropriate things.
Our roadmap for the project is available here: http://code.google.com/p/openworm/wiki/Roadmap
We have a mailing list here: http://groups.google.com/group/openworm
We have regular meetings on Google+ Hangout. If you want to help, we can surely find a way to include you. If you are interested, please let us know and we’ll loop you in.
Cheers, Stephen