I’m not surprised BPEs are semi-coherent. As I said, dark knowledge, and anyway, BPEs are a compression algorithm (compression=intelligence) which were trained on a large English text corpus, so them not being random linenoise is no more surprising than n-grams or gzip being able to generate English-y text.
I had this intuition for n-grams (natively) and gzip (from this paper). Never really considered how much BPE compresses the token space, not sure why.
But Whisper-V2 is processing real data still, so it’s a mix of learning from data (the Whisper models haven’t extracted all possible knowledge from the first pass through the data) and amortizing compute (the training+runtime compute of the Whisper-V2 is being distilled into cleaner pseudo-data for Whisper-V3 to train faster on). You would not generate freeform gibberish, unanchored in any real audio or text, from Whisper-V3 to train V4 and then V5 and then V6 and then V7, and expect V7 to be wildly better.
This makes sense. This made me think whether there’d be some way to chain learning between modalities for a multimodal model, but it would probably fall into the same pit: beyond the initial data, the change in modality would still be producing and learning from synthetic data, not real data as is the case for Whisper.
This knowledge distillation of inner-monologue can be, and has been, done directly, so detouring through a from-scratch RLAIF-ish approach would seem to offer a lot of complexity and downsides compared to just the obvious direct thing.
I do agree that distilling inner monologue is easier than learning the same thing from scratch. I don’t think this RLAIF-from-scratch is the end-all-be-all of what’s gonna work; I find it a useful frame of thinking for considering other approaches that could work better for learning language more from scratch.
For example, this discussion with you popped the idea of using GANs into my head, which it turns out has been tried extensively. Not to the same scale as next token prediction though. DeepMind has this paper on using a GAN with LSTMs for the generator and discriminator to learn language “from scratch”. This survey paper presents other papers using GANs for text generation. Some highlights from quickly skimming through it: 1, 2, 3, 4.
This paper says (paraphrasing the abstract) that GANs are overkill for NLP since minimizing distinguishability (between generator and real outputs) can be seen as maximizing likelihood for NNs with a softmax output layer. I think that being able to define more complex loss functions with GANs is one benefit. You could use multiple discriminators: one for the pre-training data, one for a helpfulness data set, one for a harmlessness data set, etc.
Kind of as an aside, this paper connects GANs to inverse RL (e.g. learning a reward model from human feedback data), and to energy-based models (where Yann LeCun seems to think the future of self-supervised learning is going).
It is also just that there is a world outside language, while there is much less of an outside for logic, math, or Go.
Good point. Maybe what I’m thinking of will only become possible once language models are more grounded in the real world. Multi-modality is a step in that direction, and robotics. We’re probably at least a few years from robots collecting enough of their own data in the real world though.
Yeah, GANs for sequences are one of those ideas that people kept trying and it never worked. It wasn’t entirely clear why; I suspect that much of it was simply that due to the inefficiency of RL and the very very smolness of all the GAN sequence work back then*, that it was all dead on arrival. (I never really bought the “it’s just equivalent to likelihood” argument. GANs always seemed to operate in images in a very qualitatively distinct way from all likelihood-based approaches; and if you look at things abstractly enough, you can make anything equivalent to anything like that.) It’s possible that retrying today with proper scale might work, same way that image GANs now work at scale (despite being left for dead by contemporary researchers who had failed to note that BigGAN scaled just fine to JFT-300M).
But my real suspicion is that direct generative learning is too efficient, so the proper role for GANs would be as an additional phase of training, to sharpen a standard LLM.
AFAIK, this has not been done except inasmuch as you interpret the various preference-learning approaches as actor-critic RL (which means you can also further interpret them as GANs). Given how well diffusion models can be tuned by a simple adversarial loss into a GAN-like single-step Generator, I suspect that some adversarial training of LLMs might be quite useful. I should poke around in Arxiv and see if anyone’s tried that yet...
* LSTM RNNs, or heck, GPTs, wouldn’t look all that impressive if they were trained with similar compute/data as those sequence GAN papers were
I had this intuition for n-grams (natively) and gzip (from this paper). Never really considered how much BPE compresses the token space, not sure why.
This makes sense. This made me think whether there’d be some way to chain learning between modalities for a multimodal model, but it would probably fall into the same pit: beyond the initial data, the change in modality would still be producing and learning from synthetic data, not real data as is the case for Whisper.
I do agree that distilling inner monologue is easier than learning the same thing from scratch. I don’t think this RLAIF-from-scratch is the end-all-be-all of what’s gonna work; I find it a useful frame of thinking for considering other approaches that could work better for learning language more from scratch.
For example, this discussion with you popped the idea of using GANs into my head, which it turns out has been tried extensively. Not to the same scale as next token prediction though. DeepMind has this paper on using a GAN with LSTMs for the generator and discriminator to learn language “from scratch”. This survey paper presents other papers using GANs for text generation. Some highlights from quickly skimming through it: 1, 2, 3, 4.
This paper says (paraphrasing the abstract) that GANs are overkill for NLP since minimizing distinguishability (between generator and real outputs) can be seen as maximizing likelihood for NNs with a softmax output layer. I think that being able to define more complex loss functions with GANs is one benefit. You could use multiple discriminators: one for the pre-training data, one for a helpfulness data set, one for a harmlessness data set, etc.
Kind of as an aside, this paper connects GANs to inverse RL (e.g. learning a reward model from human feedback data), and to energy-based models (where Yann LeCun seems to think the future of self-supervised learning is going).
Good point. Maybe what I’m thinking of will only become possible once language models are more grounded in the real world. Multi-modality is a step in that direction, and robotics. We’re probably at least a few years from robots collecting enough of their own data in the real world though.
Yeah, GANs for sequences are one of those ideas that people kept trying and it never worked. It wasn’t entirely clear why; I suspect that much of it was simply that due to the inefficiency of RL and the very very smolness of all the GAN sequence work back then*, that it was all dead on arrival. (I never really bought the “it’s just equivalent to likelihood” argument. GANs always seemed to operate in images in a very qualitatively distinct way from all likelihood-based approaches; and if you look at things abstractly enough, you can make anything equivalent to anything like that.) It’s possible that retrying today with proper scale might work, same way that image GANs now work at scale (despite being left for dead by contemporary researchers who had failed to note that BigGAN scaled just fine to JFT-300M).
But my real suspicion is that direct generative learning is too efficient, so the proper role for GANs would be as an additional phase of training, to sharpen a standard LLM.
AFAIK, this has not been done except inasmuch as you interpret the various preference-learning approaches as actor-critic RL (which means you can also further interpret them as GANs). Given how well diffusion models can be tuned by a simple adversarial loss into a GAN-like single-step Generator, I suspect that some adversarial training of LLMs might be quite useful. I should poke around in Arxiv and see if anyone’s tried that yet...
* LSTM RNNs, or heck, GPTs, wouldn’t look all that impressive if they were trained with similar compute/data as those sequence GAN papers were