Similarities in structure and function abound in biology; individual neurons that activate exclusively to particular oriented stimuli exist in animals from drosophila (Strother et al. 2017) via pigeons (Li et al. 2007) and turtles (Ammermueller et al. 1995) to macaques (De Valois et al. 1982). The universality of major functional response classes in biology suggests that the neural systems underlying information processing in biology might be highly stereotyped (Van Hooser, 2007, Scholl et al. 2013). In line with this hypothesis, a wide range of neural phenomena emerge as optimal solutions to their respective functional requirements (Poggio 1981, Wolf 2003, Todorov 2004, Gardner 2019). Intriguingly, recent studies on artificial neural networks that approach human-level performance reveal surprising similarity between emerging representations in both artificial and biological brains (Kriegeskorte 2015, Yamins et al. 2016, Zhuang et al. 2020).
Despite the commonalities across different animal species, there is also substantial variability (Van Hooser, 2007). One prominent example of a functional neural structure that is present in some, but absent in other, animals is the orientation pinwheel in the primary visual cortex (Meng et al. 2012), synaptic clustering with respect to orientation selectivity (Kirchner et al. 2021), or the distinct three-layered cortex in reptiles (Tosches et al. 2018). These examples demonstrate that while general organization principles might be universal, the details of how exactly and where in the brain the principles manifest is highly dependent on anatomical factors (Keil et al. 2012, Kirchner et al. 2021), genetic lineage (Tosches et al. 2018), and ecological factors (Roeth et al. 2021). Thus, the universality hypothesis as applied to biological systems does not imply perfect replication of a given feature across all instances of the system. Rather, it suggests that there are broad principles or abstractions that underlie the function of cognitive systems, which are conserved across different species and contexts.
Neuroscience and Natural Abstractions
Similarities in structure and function abound in biology; individual neurons that activate exclusively to particular oriented stimuli exist in animals from drosophila (Strother et al. 2017) via pigeons (Li et al. 2007) and turtles (Ammermueller et al. 1995) to macaques (De Valois et al. 1982). The universality of major functional response classes in biology suggests that the neural systems underlying information processing in biology might be highly stereotyped (Van Hooser, 2007, Scholl et al. 2013). In line with this hypothesis, a wide range of neural phenomena emerge as optimal solutions to their respective functional requirements (Poggio 1981, Wolf 2003, Todorov 2004, Gardner 2019). Intriguingly, recent studies on artificial neural networks that approach human-level performance reveal surprising similarity between emerging representations in both artificial and biological brains (Kriegeskorte 2015, Yamins et al. 2016, Zhuang et al. 2020).
Despite the commonalities across different animal species, there is also substantial variability (Van Hooser, 2007). One prominent example of a functional neural structure that is present in some, but absent in other, animals is the orientation pinwheel in the primary visual cortex (Meng et al. 2012), synaptic clustering with respect to orientation selectivity (Kirchner et al. 2021), or the distinct three-layered cortex in reptiles (Tosches et al. 2018). These examples demonstrate that while general organization principles might be universal, the details of how exactly and where in the brain the principles manifest is highly dependent on anatomical factors (Keil et al. 2012, Kirchner et al. 2021), genetic lineage (Tosches et al. 2018), and ecological factors (Roeth et al. 2021). Thus, the universality hypothesis as applied to biological systems does not imply perfect replication of a given feature across all instances of the system. Rather, it suggests that there are broad principles or abstractions that underlie the function of cognitive systems, which are conserved across different species and contexts.