It’s probably a lower bound. These datasets tend to be fairly narrow by design. I’d guess it’s more than 2x across all domains globally. And cutting the absolute loss by 50% will be quite difficult. Even increasing the compute by 1000x only gets you about half that under the best-case scenario… Let’s see, to continue my WebText crossentropy example, 1000x reduces the loss by about a third, so if you want to halve it (we’ll assume that’s about the distance to human performance on WebText) from 1.73 to 0.86, you’d need (2.57 * (3.64 * (10^3 * x))^(-0.048)) = 0.86 where x = 2.2e6 or 2,200,000x the compute of GPT-3. Getting 2.2 million times more compute than GPT-3 is quite an ask over the next decade or two.
Might as well finish out this forecasting exercise...
If we assume compute follows the current trend of peak AI project compute doubling every 3.4 months, then 2.2e6× more compute would be log2(2.2e6) = 22 doublings away—or 22*(3.4/12) = 6.3 years, or 2027. (Seems a little unlikely.)
Going the other direction, Hernandez & Brown 2020′s estimate is that, net of hardware & algorithmic progress, the cost of a fixed level of performance halves every 16 months; so if GPT-3 cost ~$5m in early 2020, then it’ll cost $2.5m around mid-2021, and so on. Similarly, a GPT-human requiring 2.2e6× more compute would presumably cost on the order of $10 trillion in 2020, but after 14 halvings (18 years) would cost $1b in 2038.
Metaculus currently seems to be roughly in between 2027 and 2038 right now, incidentally.
What is that formula based on? Can’t find anything from googling. I thought it may be from the OpenAI paper Scaling Laws for Neural Language Models, but can’t find it with ctrl+f.
It’s probably a lower bound. These datasets tend to be fairly narrow by design. I’d guess it’s more than 2x across all domains globally. And cutting the absolute loss by 50% will be quite difficult. Even increasing the compute by 1000x only gets you about half that under the best-case scenario… Let’s see, to continue my WebText crossentropy example, 1000x reduces the loss by about a third, so if you want to halve it (we’ll assume that’s about the distance to human performance on WebText) from 1.73 to 0.86, you’d need
(2.57 * (3.64 * (10^3 * x))^(-0.048)) = 0.86
where x = 2.2e6 or 2,200,000x the compute of GPT-3. Getting 2.2 million times more compute than GPT-3 is quite an ask over the next decade or two.Might as well finish out this forecasting exercise...
If we assume compute follows the current trend of peak AI project compute doubling every 3.4 months, then 2.2e6× more compute would be log2(2.2e6) = 22 doublings away—or 22*(3.4/12) = 6.3 years, or 2027. (Seems a little unlikely.)
Going the other direction, Hernandez & Brown 2020′s estimate is that, net of hardware & algorithmic progress, the cost of a fixed level of performance halves every 16 months; so if GPT-3 cost ~$5m in early 2020, then it’ll cost $2.5m around mid-2021, and so on. Similarly, a GPT-human requiring 2.2e6× more compute would presumably cost on the order of $10 trillion in 2020, but after 14 halvings (18 years) would cost $1b in 2038.
Metaculus currently seems to be roughly in between 2027 and 2038 right now, incidentally.
What is that formula based on? Can’t find anything from googling. I thought it may be from the OpenAI paper Scaling Laws for Neural Language Models, but can’t find it with ctrl+f.
It’s in the figure.