Depending on the rest of your utility distribution, that is probably true. Note, however, that an additional 10^6 utility in the right half of the utility function will change the median outcome of your “life”: If 10^6 is larger than all the other utility you could ever receive, and you add a 49 % chance of receiving it, the 50th percentile utility after that should look like the 98th percentile utility before.
Could you rephrase this somehow? I’m not understanding it. If you actually won the bet and got the extra utility, your median expected utility would be higher, but you wouldn’t take the bet, because your median expected utility is lower if you do.
Depending on the rest of your utility distribution, that is probably true. Note, however, that an additional 10^6 utility in the right half of the utility function will change the median outcome of your “life”: If 10^6 is larger than all the other utility you could ever receive, and you add a 49 % chance of receiving it, the 50th percentile utility after that should look like the 98th percentile utility before.
Could you rephrase this somehow? I’m not understanding it. If you actually won the bet and got the extra utility, your median expected utility would be higher, but you wouldn’t take the bet, because your median expected utility is lower if you do.