The tricky bit is the question whether this also applies to one-shot problems or not.
This is the crux. It seems to me that the expected utility frame work means that if you prefer A to B in one time choice, then you must also prefer n repetitions of A to n repetitions of B, because the fact that you have larger variance for n=1 does not matter. This seems intuitively wrong to me.
I’d hold that it’s the reverse that seems more questionable. If n is a large number then the Law of Large Numbers may be applicable (“the average of the results obtained from a large number of trials should be close to the expected value, and will tend to become closer as more trials are performed.”).
This is the crux. It seems to me that the expected utility frame work means that if you prefer A to B in one time choice, then you must also prefer n repetitions of A to n repetitions of B, because the fact that you have larger variance for n=1 does not matter. This seems intuitively wrong to me.
I’d hold that it’s the reverse that seems more questionable. If n is a large number then the Law of Large Numbers may be applicable (“the average of the results obtained from a large number of trials should be close to the expected value, and will tend to become closer as more trials are performed.”).