Yeah, this all sounds right, and it’s fairly close to the narrative I was using for my previous draft, which had a section on some of these motives.
The best defense I can give of the switch to the hype-centric framing, FWIW:
The paper is inevitably going to have to do a lot of chastising of authors. Giving the most charitable possible framing of the motivations of the authors I’m chastising means that I’m less likely to lose the trust/readership of those authors and anyone who identifies with them.
An increasingly large fraction of NLP work—possibly even a majority now—is on the analysis/probing/datasets side rather than model development, and your incentives 1 and 2 don’t apply as neatly there. There are still incentives to underclaim, but they work differently.
Practically, writing up that version clearly seemed to require a good deal more space, in an already long-by-ML-standards paper.
That said, I agree that this framing is a little bit too charitable, to the point of making implausible implications about some of these authors’ motives in some cases, which isn’t a good look. I also hadn’t thought of the wasted effort point, which seems quite useful here. I’m giving a few talks about this over the next few weeks, and I’ll workshop some tweaks to the framing with this in mind.
Yeah, this all sounds right, and it’s fairly close to the narrative I was using for my previous draft, which had a section on some of these motives.
The best defense I can give of the switch to the hype-centric framing, FWIW:
The paper is inevitably going to have to do a lot of chastising of authors. Giving the most charitable possible framing of the motivations of the authors I’m chastising means that I’m less likely to lose the trust/readership of those authors and anyone who identifies with them.
An increasingly large fraction of NLP work—possibly even a majority now—is on the analysis/probing/datasets side rather than model development, and your incentives 1 and 2 don’t apply as neatly there. There are still incentives to underclaim, but they work differently.
Practically, writing up that version clearly seemed to require a good deal more space, in an already long-by-ML-standards paper.
That said, I agree that this framing is a little bit too charitable, to the point of making implausible implications about some of these authors’ motives in some cases, which isn’t a good look. I also hadn’t thought of the wasted effort point, which seems quite useful here. I’m giving a few talks about this over the next few weeks, and I’ll workshop some tweaks to the framing with this in mind.