I think you’re broadly right, but I think it’s worth mentioning that DNA is a probabilistic compression (evidence: differences in identical twins), so it gets weird when you talk about compressing an adult at age 25 - what is probabilistic compression at that point?
But I think you’ve mostly convinced me. Whatever it takes to “encode” a human, it’s possible to compress it to be something very small.
A minor nitpick, DNA, the encoding concept, is not probabilistic, it’s everything surrounding such as the packaging, 3D shape, epigenes, etc., plus random mutations, transcription errors, etc., that causes identical twins to deviate.
Of course it is so compact because it doesn’t bother spending many ‘bits’ on ancilliary capabilities to correct operating errors.
But it’s at least theoretically possible for it to be deterministic under ideal conditions.
To that first sentence, I don’t want to get lost in semantics here. My specific statement is that the process that takes DNA into a human is probabilistic with respect to the DNA sequence alone. Add in all that other stuff, and maybe at some point it becomes deterministic, but at that point you are no longer discussing the <1GB that makes DNA. If you wanted to be truly deterministic, especially up to the age of 25, I seriously doubt it could be done in less than millions of petabytes, because there are such a huge number of miniscule variations in conditions and I suspect human development is a highly chaotic process.
As you said, though, we’re at the point of minor nitpicks here. It doesn’t have to be a deterministic encoding for your broader points to stand.
Perhaps I phrased it poorly, let me put it this way.
If super-advanced aliens suddenly showed up tomorrow and gave us the near-physically-perfectly technology, machines, techniques, etc., we could feasibly have a fully deterministic, down to the cell level at least, encoding of any possible individual human stored in a box of hard drives or less.
In practical terms I can’t even begin to imagine the technology needed to reliably and repeatably capture a ‘snapshot’ of a living, breathing, human’s cellular state, but there’s no equivalent of a light speed barrier preventing it.
I think you’re broadly right, but I think it’s worth mentioning that DNA is a probabilistic compression (evidence: differences in identical twins), so it gets weird when you talk about compressing an adult at age 25 - what is probabilistic compression at that point?
But I think you’ve mostly convinced me. Whatever it takes to “encode” a human, it’s possible to compress it to be something very small.
A minor nitpick, DNA, the encoding concept, is not probabilistic, it’s everything surrounding such as the packaging, 3D shape, epigenes, etc., plus random mutations, transcription errors, etc., that causes identical twins to deviate.
Of course it is so compact because it doesn’t bother spending many ‘bits’ on ancilliary capabilities to correct operating errors.
But it’s at least theoretically possible for it to be deterministic under ideal conditions.
To that first sentence, I don’t want to get lost in semantics here. My specific statement is that the process that takes DNA into a human is probabilistic with respect to the DNA sequence alone. Add in all that other stuff, and maybe at some point it becomes deterministic, but at that point you are no longer discussing the <1GB that makes DNA. If you wanted to be truly deterministic, especially up to the age of 25, I seriously doubt it could be done in less than millions of petabytes, because there are such a huge number of miniscule variations in conditions and I suspect human development is a highly chaotic process.
As you said, though, we’re at the point of minor nitpicks here. It doesn’t have to be a deterministic encoding for your broader points to stand.
Perhaps I phrased it poorly, let me put it this way.
If super-advanced aliens suddenly showed up tomorrow and gave us the near-physically-perfectly technology, machines, techniques, etc., we could feasibly have a fully deterministic, down to the cell level at least, encoding of any possible individual human stored in a box of hard drives or less.
In practical terms I can’t even begin to imagine the technology needed to reliably and repeatably capture a ‘snapshot’ of a living, breathing, human’s cellular state, but there’s no equivalent of a light speed barrier preventing it.