Eliezer: “Fly, you’ve just postulated four copies of the same gene, so that one death will remove four mutations. But these four copies will suffer mutations four times as often. Unless I’m missing something, this doesn’t increase the bound on how much non-redundant information can be supported by one death. :)”
Yeah, you are right. You only gain if the redundancy means that the fitness hit is sufficiently minor that more than four errors could be removed with a single death.
The “one death, one mutation” rule applies if the mutation immediately affects the first generations. However, having backup copies means that mutations are seldom all that damaging. Humans have two copies of the genome (except for us poor males who suffer from X-linked genetic diseases). A loss-of-function mutation in a gene may have minor fitness impact. If a mutation causes failure to implant or an early miscarriage, then it should have little affect on the number of offspring a woman produces. If the mutation has minor fitness impact then the more efficient error correcting that occurs through crossover, chromosome competition, and mate competition could come into play.
Redundancy might increase the amount non-redundant information supported by one death, but not in the manner I presented in that example.
PS
In some cases assortative mating could also act to segregate beneficial and harmful alleles and accelerate filtering.
I like that evolution inherently prioritizes error removal. The worst mutations are removed quickly at a high “death” cost. Less harmful mutations are removed more slowly and at a lower “death” cost (since multiple “errors” are removed with each death).
Eliezer: “Fly, you’ve just postulated four copies of the same gene, so that one death will remove four mutations. But these four copies will suffer mutations four times as often. Unless I’m missing something, this doesn’t increase the bound on how much non-redundant information can be supported by one death. :)”
Yeah, you are right. You only gain if the redundancy means that the fitness hit is sufficiently minor that more than four errors could be removed with a single death.
The “one death, one mutation” rule applies if the mutation immediately affects the first generations. However, having backup copies means that mutations are seldom all that damaging. Humans have two copies of the genome (except for us poor males who suffer from X-linked genetic diseases). A loss-of-function mutation in a gene may have minor fitness impact. If a mutation causes failure to implant or an early miscarriage, then it should have little affect on the number of offspring a woman produces. If the mutation has minor fitness impact then the more efficient error correcting that occurs through crossover, chromosome competition, and mate competition could come into play.
Redundancy might increase the amount non-redundant information supported by one death, but not in the manner I presented in that example.
PS
In some cases assortative mating could also act to segregate beneficial and harmful alleles and accelerate filtering.
I like that evolution inherently prioritizes error removal. The worst mutations are removed quickly at a high “death” cost. Less harmful mutations are removed more slowly and at a lower “death” cost (since multiple “errors” are removed with each death).