K. S. Van Horn gives a few lines describing the derivation in his PT:TLoS errata. I don’t understand why he does step 4 there—it seems to me to be irrelevant. The two main facts which are needed are step 2-3 and step 5, the sum of a geometric series and the Taylor series expansion around y = S(x). Hopefully that is a good hint.
Nitpicking with his errata, 1/(1-z) = 1 + z + O(z^2) for all z is wrong since the interval of convergence for the RHS is (-1,1). This is not important to the problem since the z here will be z = exp(-q) which is less than 1 since q is positive.
It is not very important, but since you mentioned it :
The interval of convergence of the Taylor series of 1/(1-z) at z=0 is indeed (-1,1).
But “1/(1-z) = 1 + z + O(z^2) for all z” does not make sense to me.
1/(1-z) = 1 + z + O(z^2) means that there is an M such as |1/(1-z) - (1 + z)| is no greater that M*z^2 for every z close enough to 0.
It is about the behavior of 1/(1-z) - (1 + z) when z tends toward 0, not when z belongs to (-1,1).
K. S. Van Horn gives a few lines describing the derivation in his PT:TLoS errata. I don’t understand why he does step 4 there—it seems to me to be irrelevant. The two main facts which are needed are step 2-3 and step 5, the sum of a geometric series and the Taylor series expansion around y = S(x). Hopefully that is a good hint.
Nitpicking with his errata, 1/(1-z) = 1 + z + O(z^2) for all z is wrong since the interval of convergence for the RHS is (-1,1). This is not important to the problem since the z here will be z = exp(-q) which is less than 1 since q is positive.
It is not very important, but since you mentioned it :
The interval of convergence of the Taylor series of 1/(1-z) at z=0 is indeed (-1,1).
But “1/(1-z) = 1 + z + O(z^2) for all z” does not make sense to me.
1/(1-z) = 1 + z + O(z^2) means that there is an M such as |1/(1-z) - (1 + z)| is no greater that M*z^2 for every z close enough to 0. It is about the behavior of 1/(1-z) - (1 + z) when z tends toward 0, not when z belongs to (-1,1).
Is there anything more to getting 2.53 than just rearranging things around? I’m not sure I really understand where we get the left-hand side from.
Indeed, thanks!