I agree with you regarding 0 lebesgue. My impression is that the Pearl paradigm has some [statistics → causal graph] inference rules which basically do the job of ruling out causal graphs for which having certain properties seen in the data has 0 lebesgue measure. (The inference from two variables being independent to them having no common ancestors in the underlying causal graph, stated earlier in the post, is also of this kind.) So I think it’s correct to say “X has to cause Y”, where this is understood as a valid inference inside the Pearl (or Garrabrant) paradigm. (But also, updating pretty close to “X has to cause Y” is correct for a Bayesian with reasonable priors about the underlying causal graphs.)
(epistemic position: I haven’t read most of the relevant material in much detail)
I agree with you regarding 0 lebesgue. My impression is that the Pearl paradigm has some [statistics → causal graph] inference rules which basically do the job of ruling out causal graphs for which having certain properties seen in the data has 0 lebesgue measure. (The inference from two variables being independent to them having no common ancestors in the underlying causal graph, stated earlier in the post, is also of this kind.) So I think it’s correct to say “X has to cause Y”, where this is understood as a valid inference inside the Pearl (or Garrabrant) paradigm. (But also, updating pretty close to “X has to cause Y” is correct for a Bayesian with reasonable priors about the underlying causal graphs.)
(epistemic position: I haven’t read most of the relevant material in much detail)