As for your last point, I understand that you consider the absorption of the photon as detection. By your logic, a rock detects light. Do rocks also feel cold?
(It feels to me as if I’m trying to have a serious discussion while you’re trying to score points. I hope this impression is wrong.)
The absorption-by-an-electron mechanism is exactly the same one you describe as how photons (or, as you would prefer to say, collisions between photons and other things) get detected. Obviously that absorption is only the first step in the process, and obviously there are instances of photon-absorption that don’t lead to anything we would want to call detection. What I was saying (and I apologize if I was insufficiently clear) is that the process we both agree happens, where a photon excites an electron and the electron then does other things whose effects end up including, e.g., certain kinds of effects in a person’s brain or a digital camera’s memory circuitry, can just as well be called “detecting a photon” as “detecting a photon collision”.
I think your final question is more snark than actual argument, and I hope the foregoing paragraph has indicated why the snark is not appropriate. But I’ll answer it anyway: rocks don’t generally “detect light” in any useful sense, but in any case they come closer to “detecting light” than to “feeling cold” because feeling is a term that we use specifically to denote processes in an actual brain. One could reasonably say that a thermostat “detects low temperatures” but not (other than as deliberate anthropomorphism, perhaps for fun) that it “feels cold”. Similarly, I would be happy to say that a rod or cone cell in a human retina “detects light” but not that it, say, “sees the sun”; or that whatever organs in the human body respond to cold—I realise that I have no idea offhand what they are—“detect low temperatures” but not that they “feel cold”.
That gives me a “you have reached your limit and can’t read any more” message. I found what seems to be the same book on Amazon UK and tried their “look inside” feature but failed to find anything saying anything to do with seeing or feeling photons.
Anyway. Whether to say “we detect photons” or “we detect photons striking our retina” or “we detect photons interacting with electrons in rhodopsin in our rod and cone cells” or “we detect electrical impulses in our retina arising from photon-electron interactions” or whatever is, it seems to me, a matter of terminology only. We’re describing the same process in any case. You (if I’m understanding you right) consider it definitely wrong to say that we detect photons, and I don’t yet understand why. (I can think of some possible reasons but I don’t find any of them convincing and I would rather not argue against a straw man.)
Am I correctly understanding your position? If so, why do you consider it wrong to say that when a photon interacts with an appropriate electron in a rod or cone cell in a human retina, that photon has been detected? What bad consequence ensues from using the word “detect” like that? (Or, if your objection isn’t about bad consequences: how is using the word “detect” like that inconsistent with other usages we’re attached to? Or … whatever it is that’s wrong, what’s wrong?)
The point is that a photon is a boson particle. At the moment we detect a collision, the photon ceases to exist. Prior to the collision a photon existed. We can only ever detect where and when a photon has struck something. Never the photon itself.
I know that photons are bosons. I know that they cease to exist when they interact with electrons. What I don’t understand is why you think that those facts (which are not in dispute) make it wrong to say that we detect photons.
As for your last point, I understand that you consider the absorption of the photon as detection. By your logic, a rock detects light. Do rocks also feel cold?
(It feels to me as if I’m trying to have a serious discussion while you’re trying to score points. I hope this impression is wrong.)
The absorption-by-an-electron mechanism is exactly the same one you describe as how photons (or, as you would prefer to say, collisions between photons and other things) get detected. Obviously that absorption is only the first step in the process, and obviously there are instances of photon-absorption that don’t lead to anything we would want to call detection. What I was saying (and I apologize if I was insufficiently clear) is that the process we both agree happens, where a photon excites an electron and the electron then does other things whose effects end up including, e.g., certain kinds of effects in a person’s brain or a digital camera’s memory circuitry, can just as well be called “detecting a photon” as “detecting a photon collision”.
I think your final question is more snark than actual argument, and I hope the foregoing paragraph has indicated why the snark is not appropriate. But I’ll answer it anyway: rocks don’t generally “detect light” in any useful sense, but in any case they come closer to “detecting light” than to “feeling cold” because feeling is a term that we use specifically to denote processes in an actual brain. One could reasonably say that a thermostat “detects low temperatures” but not (other than as deliberate anthropomorphism, perhaps for fun) that it “feels cold”. Similarly, I would be happy to say that a rod or cone cell in a human retina “detects light” but not that it, say, “sees the sun”; or that whatever organs in the human body respond to cold—I realise that I have no idea offhand what they are—“detect low temperatures” but not that they “feel cold”.
I’m trying to point out the difference between detecting something and detecting it’s effect. We detect the spike in energy resulting from light striking something. https://books.google.co.za/books?dq=do+we+see+or+feel+photons%3F&hl=en&id=rPNHAwAAQBAJ&lpg=PA109&ots=z-SPeSNkqN&pg=PA109&sa=X&sig=DNk__1lCk-GcaYSeMXSSoBeUsFs&source=bl&ved=0ahUKEwiytpf1m43TAhWBCMAKHZ9vAUEQ6AEIQjAH#v=onepage&q=do%20we%20see%20or%20feel%20photons%3F&f=false
That gives me a “you have reached your limit and can’t read any more” message. I found what seems to be the same book on Amazon UK and tried their “look inside” feature but failed to find anything saying anything to do with seeing or feeling photons.
Anyway. Whether to say “we detect photons” or “we detect photons striking our retina” or “we detect photons interacting with electrons in rhodopsin in our rod and cone cells” or “we detect electrical impulses in our retina arising from photon-electron interactions” or whatever is, it seems to me, a matter of terminology only. We’re describing the same process in any case. You (if I’m understanding you right) consider it definitely wrong to say that we detect photons, and I don’t yet understand why. (I can think of some possible reasons but I don’t find any of them convincing and I would rather not argue against a straw man.)
Am I correctly understanding your position? If so, why do you consider it wrong to say that when a photon interacts with an appropriate electron in a rod or cone cell in a human retina, that photon has been detected? What bad consequence ensues from using the word “detect” like that? (Or, if your objection isn’t about bad consequences: how is using the word “detect” like that inconsistent with other usages we’re attached to? Or … whatever it is that’s wrong, what’s wrong?)
The point is that a photon is a boson particle. At the moment we detect a collision, the photon ceases to exist. Prior to the collision a photon existed. We can only ever detect where and when a photon has struck something. Never the photon itself.
I know that photons are bosons. I know that they cease to exist when they interact with electrons. What I don’t understand is why you think that those facts (which are not in dispute) make it wrong to say that we detect photons.