I agree with this, but one thing I wonder about—how much virus is transferred at each stage? Viruses (unlike bacteria) strictly cannot reproduce outside the human body. So there should be a zero-sum (really negative-sum) process happening in these kinds of contamination events. You ought to end up with a lot less virus on your phone the second time, in the above sequence, than the first time—right?
This touches on something I’ve been wondering about—but suspect it may well be a purely academic type question.
Viral infections (possibly all infections) is largely a random chemical reaction that occurs. The virus has to randomly bump into the right type of cell (perhaps with the right orientation) and perhaps the right part of the cell. In fact, the virus could bump into something that effectively neutralizes the virus.
So what are the probabilities for that event?
Given the infection rates, clearly the combination of both the quantity of viruses and the probability of success for any given virus is pretty high. But still, I wonder about the one virus probability of success. Then we would also have some clue about just how far we can expect all the hygiene effort is really going to accomplish.
I agree with this, but one thing I wonder about—how much virus is transferred at each stage? Viruses (unlike bacteria) strictly cannot reproduce outside the human body. So there should be a zero-sum (really negative-sum) process happening in these kinds of contamination events. You ought to end up with a lot less virus on your phone the second time, in the above sequence, than the first time—right?
This touches on something I’ve been wondering about—but suspect it may well be a purely academic type question.
Viral infections (possibly all infections) is largely a random chemical reaction that occurs. The virus has to randomly bump into the right type of cell (perhaps with the right orientation) and perhaps the right part of the cell. In fact, the virus could bump into something that effectively neutralizes the virus.
So what are the probabilities for that event?
Given the infection rates, clearly the combination of both the quantity of viruses and the probability of success for any given virus is pretty high. But still, I wonder about the one virus probability of success. Then we would also have some clue about just how far we can expect all the hygiene effort is really going to accomplish.