I see. In that case, what do you think of my suggestion of inverting the LM? By default, it maps human reward functions to behavior. But when you invert it, it maps behavior to reward functions (possibly this is a one-to-many mapping but this ambiguity is a problem you can solve with more diverse behavior data). Then you could use it for IRL (with the some caveats I mentioned).
Which may be necessary since this:
The LM itself is directly mapping human behaviour (as described in the prompt) to human rewards/goals (described in the output of the LM).
...seems like an unreliable mapping since any training data of the form “person did X, therefore their goal must be Y” is firstly rare and more importantly inaccurate/incomplete since it’s hard to describe human goals in language. On the other hand, human behavior seems easier to describe in language.
Can you clarify: are you talking about inverting the LM as a function or algorithm, or constructing prompts to elicit different information (while using the LM as normal)?
For myself, I was thinking of using CHATGPT-style approaches with multiple queries—what is your prediction for their preferences, how could that prediction be checked, what more information would you need, etc...
I see. In that case, what do you think of my suggestion of inverting the LM? By default, it maps human reward functions to behavior. But when you invert it, it maps behavior to reward functions (possibly this is a one-to-many mapping but this ambiguity is a problem you can solve with more diverse behavior data). Then you could use it for IRL (with the some caveats I mentioned).
Which may be necessary since this:
...seems like an unreliable mapping since any training data of the form “person did X, therefore their goal must be Y” is firstly rare and more importantly inaccurate/incomplete since it’s hard to describe human goals in language. On the other hand, human behavior seems easier to describe in language.
Can you clarify: are you talking about inverting the LM as a function or algorithm, or constructing prompts to elicit different information (while using the LM as normal)?
For myself, I was thinking of using CHATGPT-style approaches with multiple queries—what is your prediction for their preferences, how could that prediction be checked, what more information would you need, etc...