So, an “optimal prior” is either a subjectively guessed probability or, more optimally, probability distribution that coincides with an objective probability or probability distribution. That is it would equal the posterior distribution one would arrive at after the asymptotic working out of Bayes’ Theorem, assuming the conditions for Bayes’ Theorem hold.
But, what if those conditions do not hold? Will the “optimal prior” be equal to the “objective truth” or to the distribution that one arrives at after the infinite working out of the posterior adjustment learning process, even assuming that we do not have the sort of inertial slow learning that seems to exist in much of reality?
To give an example of such a non-convergence, consider the sort of example posed by Diaconis and Freeman, with an infinite dimensional space and a disconnected basis, one can end up in a cycle rather than on the mean.
Eliezer,
So, an “optimal prior” is either a subjectively guessed probability or, more optimally, probability distribution that coincides with an objective probability or probability distribution. That is it would equal the posterior distribution one would arrive at after the asymptotic working out of Bayes’ Theorem, assuming the conditions for Bayes’ Theorem hold.
But, what if those conditions do not hold? Will the “optimal prior” be equal to the “objective truth” or to the distribution that one arrives at after the infinite working out of the posterior adjustment learning process, even assuming that we do not have the sort of inertial slow learning that seems to exist in much of reality?
To give an example of such a non-convergence, consider the sort of example posed by Diaconis and Freeman, with an infinite dimensional space and a disconnected basis, one can end up in a cycle rather than on the mean.