Like you said, reading isn’t enough. I think two of the key challenges for such software would be limiting inferential distance for any particular user, and giving practice examples/problems that they actually care about. That’s much easier with a skilled mentor than with software, but I suspect it would be very helpful to have many different types of contexts and framings for whatever you try to have such software teach.
My first semester college physics class, the first homework set was all Fermi problems, just training us to make plausible assumptions and see where they lead. Things like “How many words are there in all the books in the main campus library?” or “How many feathers are there on all the birds in the world?” Even though this was years before the sequences were even written, let alone when I read them, it definitely helped me learn to think more expansively about what kinds of things count as “evidence” and how to use them. It also encourages playfulness with ideas, and counters the sense of learned helplessness a lot of us develop about knowledge in the course of our formal schooling.
Actually—beyond specific skills, it might be helpful to think about trying to foster the 12 virtues. Not just exercises, but anecdotes to motivate and show what’s possible in interesting and real contexts, games that are fun to experiment with, things like that.
Inferential distance based knowledge systems would be super cool. There are lots of stats ideas I’d like to engage in but ordering is too much of a pain.
The mentor thing is also true, I think for math in particular. Math/physics are the only subjects where I’d hesitate to just learn them by myself.
Like you said, reading isn’t enough. I think two of the key challenges for such software would be limiting inferential distance for any particular user, and giving practice examples/problems that they actually care about. That’s much easier with a skilled mentor than with software, but I suspect it would be very helpful to have many different types of contexts and framings for whatever you try to have such software teach.
My first semester college physics class, the first homework set was all Fermi problems, just training us to make plausible assumptions and see where they lead. Things like “How many words are there in all the books in the main campus library?” or “How many feathers are there on all the birds in the world?” Even though this was years before the sequences were even written, let alone when I read them, it definitely helped me learn to think more expansively about what kinds of things count as “evidence” and how to use them. It also encourages playfulness with ideas, and counters the sense of learned helplessness a lot of us develop about knowledge in the course of our formal schooling.
Actually—beyond specific skills, it might be helpful to think about trying to foster the 12 virtues. Not just exercises, but anecdotes to motivate and show what’s possible in interesting and real contexts, games that are fun to experiment with, things like that.
Inferential distance based knowledge systems would be super cool. There are lots of stats ideas I’d like to engage in but ordering is too much of a pain.
The mentor thing is also true, I think for math in particular. Math/physics are the only subjects where I’d hesitate to just learn them by myself.