Either way, fullspeed was best. My mind had been naively averaging two courses of action—the thought was something like: “maybe I should go forward, and maybe I should go backward. So, since I’m uncertain, I should go forward at half-speed!” But averages don’t actually work that way.
Averages don’t work that way because you did the math wrong: you should have stopped! I understand the point that you’re trying to make with this post, but there are many cases in which uncertainty really does mean you should stop and think, or hedge your bets, rather than go full speed ahead. It’s true there are situations in which this isn’t the case, but I think they’re rare enough that it’s worth acknowledging the value of hesitation in many cases and trying to be clear about distinguishing valid from invalid hesitation.
It’s true there are situations in which this isn’t the case, but I think they’re rare enough that it’s worth acknowledging the value of hesitation in many cases and trying to be clear about distinguishing valid from invalid hesitation.
It seems to me that thinking through uncertainties and scenarios is often really really important, as is making specific safeguards that will help you if your model turns out to be wrong; but I claim that there is a different meaning of “hesitation” that is like “keeping most of my psyche in a state of roadblock while I kind-of hang out with my friend while also feeling anxious about my paper”, or something, that is very different from actually concretely picturing the two scenarios, and figuring out how to create an outcome I’d like given both possibilities. I’m not expressing it well, but does the distinction I am trying to gesture at make sense?
If you take a weighted sum of (75% likely 60mph forward) + (25% likely 60 mph backward), you get (30 mph forward).
Stopping briefly to choose a plan might’ve been sensible, if it was easier to think while holding still; stopping after that (I had no GPS or navigation ability) wouldn’t’ve helped; I had to proceed in some direction to find out where the hotel was, and there was no point in doing that not at full speed.
Often a person should hedge bets in some fashion, or should take some action under uncertainty that is different from the action one would take if one were certain of model 1 or of model 2. The point is that “hedging” or “acting under uncertainty” in this way is different in many particulars from the sort of “kind of working” that people often end up accidentally doing, from a naiver sort of average. Often it e.g. involves running info-gathering tests at full speed, one after another. Or e.g., betting “blue” each time in this experiment, while also attempting to form better models.
Averages don’t work that way because you did the math wrong: you should have stopped! I understand the point that you’re trying to make with this post, but there are many cases in which uncertainty really does mean you should stop and think, or hedge your bets, rather than go full speed ahead. It’s true there are situations in which this isn’t the case, but I think they’re rare enough that it’s worth acknowledging the value of hesitation in many cases and trying to be clear about distinguishing valid from invalid hesitation.
It seems to me that thinking through uncertainties and scenarios is often really really important, as is making specific safeguards that will help you if your model turns out to be wrong; but I claim that there is a different meaning of “hesitation” that is like “keeping most of my psyche in a state of roadblock while I kind-of hang out with my friend while also feeling anxious about my paper”, or something, that is very different from actually concretely picturing the two scenarios, and figuring out how to create an outcome I’d like given both possibilities. I’m not expressing it well, but does the distinction I am trying to gesture at make sense?
Yup.
If you take a weighted sum of (75% likely 60mph forward) + (25% likely 60 mph backward), you get (30 mph forward).
Stopping briefly to choose a plan might’ve been sensible, if it was easier to think while holding still; stopping after that (I had no GPS or navigation ability) wouldn’t’ve helped; I had to proceed in some direction to find out where the hotel was, and there was no point in doing that not at full speed.
Often a person should hedge bets in some fashion, or should take some action under uncertainty that is different from the action one would take if one were certain of model 1 or of model 2. The point is that “hedging” or “acting under uncertainty” in this way is different in many particulars from the sort of “kind of working” that people often end up accidentally doing, from a naiver sort of average. Often it e.g. involves running info-gathering tests at full speed, one after another. Or e.g., betting “blue” each time in this experiment, while also attempting to form better models.