Sets of distributions are the natural elements of Bayesian reasoning: each distribution corresponds to a hypothesis. Some people pretend that you can collapse these down to a single distribution by some prior (and then argue about “correct” priors), but the actual machinery of Bayesian reasoning produces changes in relative hypothesis weightings. Those can be applied to any prior if you have reason to prefer a single one, or simply composed with future relative changes if you don’t.
Partially ordering options by EV over all hypotheses is likely to be a very weak order with nearly all options being incomparable (and thus permissible). However, it’s quite reasonable to have bounds on hypothesis weightings even if you don’t have good reason to choose a specific prior.
You can use prior bounds to form very much stronger partial orders in many cases.
Sets of distributions are the natural elements of Bayesian reasoning: each distribution corresponds to a hypothesis. Some people pretend that you can collapse these down to a single distribution by some prior (and then argue about “correct” priors), but the actual machinery of Bayesian reasoning produces changes in relative hypothesis weightings. Those can be applied to any prior if you have reason to prefer a single one, or simply composed with future relative changes if you don’t.
Partially ordering options by EV over all hypotheses is likely to be a very weak order with nearly all options being incomparable (and thus permissible). However, it’s quite reasonable to have bounds on hypothesis weightings even if you don’t have good reason to choose a specific prior.
You can use prior bounds to form very much stronger partial orders in many cases.