One concrete example of a case where I expect error-correcting codes (along with compression) would have been well worth the cost: 19th-century transatlantic telegraph messages, and more generally messages across lines bottlenecked mainly by the capacity of a noisy telegraph line. In those cases, five minutes for a human to encode/decode messages and apply error correction would probably have been well worth the cost for many users during peak demand. (And that’s assuming they didn’t just automate the encoding/decoding; that task is simple enough that a mechanical device could probably do it.)
For the very noisy early iterations of the line, IIRC messages usually had to be sent multiple times, and in that case especially I’d expect efficient error-correcting codes to do a lot better.
One concrete example of a case where I expect error-correcting codes (along with compression) would have been well worth the cost: 19th-century transatlantic telegraph messages, and more generally messages across lines bottlenecked mainly by the capacity of a noisy telegraph line. In those cases, five minutes for a human to encode/decode messages and apply error correction would probably have been well worth the cost for many users during peak demand. (And that’s assuming they didn’t just automate the encoding/decoding; that task is simple enough that a mechanical device could probably do it.)
For the very noisy early iterations of the line, IIRC messages usually had to be sent multiple times, and in that case especially I’d expect efficient error-correcting codes to do a lot better.