Your solution does have Omega maximize right answers. My solution works if Omega wants the “correct” result summed over all Everett branches: for every you that 2-boxes, there exists an empty box A, even if it doesn’t usually go to the 2-boxer.
Both answers are correct, but for different problems. The “classical” Newcomb’s problem is unphysical, just as byrnema initially described. A “Quantum Newcomb’s problem” requires specifying how Omega deals with quantum uncertainty.
Interesting. Since the spirit of Newcomb’s problem depends on 1-boxing have a higher payoff, I think it makes sense to additionally postulate your solution to quantum uncertainty, as it maintains the same maximizer. That’s so even if the Everett interpretation of QM is wrong.
A good point.
Your solution does have Omega maximize right answers. My solution works if Omega wants the “correct” result summed over all Everett branches: for every you that 2-boxes, there exists an empty box A, even if it doesn’t usually go to the 2-boxer.
Both answers are correct, but for different problems. The “classical” Newcomb’s problem is unphysical, just as byrnema initially described. A “Quantum Newcomb’s problem” requires specifying how Omega deals with quantum uncertainty.
Interesting. Since the spirit of Newcomb’s problem depends on 1-boxing have a higher payoff, I think it makes sense to additionally postulate your solution to quantum uncertainty, as it maintains the same maximizer. That’s so even if the Everett interpretation of QM is wrong.