I think you’re example of interpreting quantum mechanics gets pretty close to the heart of the matter. It’s one thing to point at solomonoff induction and say, “there’s your formalization”. It’s quite another to understand how Occam’s Razor is used in practice.
Nobody actually tries to convert the Standard Model to the shortest possible computer program, count the bits, and compare it to the shortest possible computer program for string theory or whatever.
What you’ll find, however; is that some theories amount to other theories but with an extra postulate or two (e.g. many worlds vs. Copenhagen). So they are strictly more complex. If it doesn’t explain more than the simpler theory the extra complexity isn’t justified.
A lot of the progression of science over the last few centuries has been toward unifying diverse theories under less complex, general frameworks. Special relativity helped unify theories about the electric and magnetic forces, which were then unified with the weak nuclear force and eventually the strong nuclear force. A lot of that work has helped explain the composition of the periodic table and the underlying mechanisms to chemistry. In other words, where there used to be many separate theories, there are now only two theories that explain almost every phenomenon in the observable universe. Those two theories are based on surprisingly few and surprisingly simple postulates.
Over the 20th century, the trend was towards reducing postulates and explaining more, so it was pretty clear that Occam’s razor was being followed. Since then, we’ve run into a bit of an impasse with GR and QFT not nicely unifying and discoveries like dark energy and dark matter.
I think you’re example of interpreting quantum mechanics gets pretty close to the heart of the matter. It’s one thing to point at solomonoff induction and say, “there’s your formalization”. It’s quite another to understand how Occam’s Razor is used in practice.
Nobody actually tries to convert the Standard Model to the shortest possible computer program, count the bits, and compare it to the shortest possible computer program for string theory or whatever.
What you’ll find, however; is that some theories amount to other theories but with an extra postulate or two (e.g. many worlds vs. Copenhagen). So they are strictly more complex. If it doesn’t explain more than the simpler theory the extra complexity isn’t justified.
A lot of the progression of science over the last few centuries has been toward unifying diverse theories under less complex, general frameworks. Special relativity helped unify theories about the electric and magnetic forces, which were then unified with the weak nuclear force and eventually the strong nuclear force. A lot of that work has helped explain the composition of the periodic table and the underlying mechanisms to chemistry. In other words, where there used to be many separate theories, there are now only two theories that explain almost every phenomenon in the observable universe. Those two theories are based on surprisingly few and surprisingly simple postulates.
Over the 20th century, the trend was towards reducing postulates and explaining more, so it was pretty clear that Occam’s razor was being followed. Since then, we’ve run into a bit of an impasse with GR and QFT not nicely unifying and discoveries like dark energy and dark matter.