Why is it important that there is a deterministic breaking rule ? When you would like random numbers, isn’t it always better to have a distribution as close as random as possible, even if it is pseudo-random ?
That question is perhaps stupid, I have the impression that I am missing something important...
Remember it is Omega implementing the tie-breaker rule, since it defines the problem.
The consequence of the tie-breaker is that the choosing agent knows that Omega’s box-choice was a simple deterministic function of a mathematical calculation (or a proof). So the agent’s uncertainty about which box contains the money is pure logical uncertainty.
Why is it important that there is a deterministic breaking rule ? When you would like random numbers, isn’t it always better to have a distribution as close as random as possible, even if it is pseudo-random ?
That question is perhaps stupid, I have the impression that I am missing something important...
Remember it is Omega implementing the tie-breaker rule, since it defines the problem.
The consequence of the tie-breaker is that the choosing agent knows that Omega’s box-choice was a simple deterministic function of a mathematical calculation (or a proof). So the agent’s uncertainty about which box contains the money is pure logical uncertainty.
Whoops… I can’t believe I missed that. You are obviously right.