That’s not a real example. :-) I can’t imagine why a microscope designer would want a smaller laser. My first draft actually had an example that would be plausibly useful for microscope designers (“invent a faster and more accurate laser galvo” or something) but then I figured, no one cares, and everyone would say “WTF does “galvo” mean?” :-P
So, you can do this thing with optical microscopy where you basically scan a laser beam over the sample to illuminate one pixel at a time. This lets you beat the diffraction limit on your aperture. So I’m sure people who build these systems like having small lasers. Another take on the same idea is to use a UV laser (different meaning of “smaller” there) and collect fluoresced rather than reflected light.
That’s not a real example. :-) I can’t imagine why a microscope designer would want a smaller laser. My first draft actually had an example that would be plausibly useful for microscope designers (“invent a faster and more accurate laser galvo” or something) but then I figured, no one cares, and everyone would say “WTF does “galvo” mean?” :-P
So, you can do this thing with optical microscopy where you basically scan a laser beam over the sample to illuminate one pixel at a time. This lets you beat the diffraction limit on your aperture. So I’m sure people who build these systems like having small lasers. Another take on the same idea is to use a UV laser (different meaning of “smaller” there) and collect fluoresced rather than reflected light.
This is fun but very off-topic. I’ll reply by DM. :-P