Hrm… reading the paper, it does look like NL1 goes from |a> to |cd> instead of |c> + |d>, This is going to move all the numbers around, but you’ll still find that it works as a bomb detector. The yellow coming out of the left non-interacting-with-bomb path only interferes with the yellow from the right-and-mid path when the bomb is a dud.
Just to be sure, I tried my hand at converting it into a logic circuit. Here’s what I get:
Having it create both the red and yellow photon, instead of either-or, seems to have improved its function as a bomb tester back up to the level of the naive bomb tester. Half of the live bombs will explode, a quarter will trigger g, and the other quarter will trigger h. None of the dud bombs will explode or trigger g; all of them trigger h. Anytime g triggers, you’ve found a live bomb without exploding it.
If you’re going to point out another minor flaw, please actually go through the analysis to show it stops working as a bomb tester. It’s frustrating for the workload to be so asymmetric, and hints at motivated stopping (and I suppose motivated continuing for me).
I never said it wouldn’t. I agreed up front that this would detect a bomb without interacting with it 50% of the time. It’s a minimally-functional bomb-tester, and the way you would optimize it is by layering the original bomb-testing apparatus over this apparatus. The two effects are pretty much completely orthogonal.
ETA: Did you just downvote my half of this whole comment chain? Am I actually wrong? If not, it appears that you’re frustrated that I’m reaching the right answer much more easily than you, which just seems petty.
Also, these are not nit-picks. You were setting the problem up entirely wrong.
Hrm… reading the paper, it does look like NL1 goes from |a> to |cd> instead of |c> + |d>, This is going to move all the numbers around, but you’ll still find that it works as a bomb detector. The yellow coming out of the left non-interacting-with-bomb path only interferes with the yellow from the right-and-mid path when the bomb is a dud.
Just to be sure, I tried my hand at converting it into a logic circuit. Here’s what I get:
Having it create both the red and yellow photon, instead of either-or, seems to have improved its function as a bomb tester back up to the level of the naive bomb tester. Half of the live bombs will explode, a quarter will trigger g, and the other quarter will trigger h. None of the dud bombs will explode or trigger g; all of them trigger h. Anytime g triggers, you’ve found a live bomb without exploding it.
If you’re going to point out another minor flaw, please actually go through the analysis to show it stops working as a bomb tester. It’s frustrating for the workload to be so asymmetric, and hints at motivated stopping (and I suppose motivated continuing for me).
I never said it wouldn’t. I agreed up front that this would detect a bomb without interacting with it 50% of the time. It’s a minimally-functional bomb-tester, and the way you would optimize it is by layering the original bomb-testing apparatus over this apparatus. The two effects are pretty much completely orthogonal.
ETA: Did you just downvote my half of this whole comment chain? Am I actually wrong? If not, it appears that you’re frustrated that I’m reaching the right answer much more easily than you, which just seems petty.
Also, these are not nit-picks. You were setting the problem up entirely wrong.