Ah interesting, - I’d not heard of ENCODE and wasn’t trying to say that there’s no such thing as DNA without function.
The way I remembered it was that 10% of DNA was coding, and then a sizeable proportion of the rest was promoters and introns and such, lots of which had fairly recently been reclaimed from ‘junk’ status. From that wiki, though, it seems that only 1-2% is actually coding.
In any case I’d overlooked the fact that even within genes there’s not going to be sensitivity to every base pair.
I’d be super interested if there were any estimates of how many bits in the genome it would take to encode a bit of a neural wiring algorithm as expressed in minified code. I’d guess the DNA would be wildly inefficient and the size of neural wiring algos expressed in code would actually be much smaller than 7.5MB but then it’s had a lot of time and pressure to maximise the information content so unsure.
Ah interesting, - I’d not heard of ENCODE and wasn’t trying to say that there’s no such thing as DNA without function.
The way I remembered it was that 10% of DNA was coding, and then a sizeable proportion of the rest was promoters and introns and such, lots of which had fairly recently been reclaimed from ‘junk’ status. From that wiki, though, it seems that only 1-2% is actually coding.
In any case I’d overlooked the fact that even within genes there’s not going to be sensitivity to every base pair.
I’d be super interested if there were any estimates of how many bits in the genome it would take to encode a bit of a neural wiring algorithm as expressed in minified code. I’d guess the DNA would be wildly inefficient and the size of neural wiring algos expressed in code would actually be much smaller than 7.5MB but then it’s had a lot of time and pressure to maximise the information content so unsure.