I was surprised the paper didn’t mention photonics or optoelectronics even once.
If looking at 5-10+ year projections, and dedicating pages to discussing the challenges in scaling compute and energy use, the rate of progress in that area in parallel to the progress in models themselves is potentially relevant.
Particularly because a dramatic hardware shift like that is likely going to mean a significant portion of progress up until that shift in topics like interpretability and alignment may be going out the window. Even if the initial shift is a 1:1 transition of capabilities and methodologies, it seems extremely unlikely that continued progress from that point onwards will be identical to what we’d expect to see in electronics.
We may well end up in a situation where fully abusing the efficiencies at hand in new hardware solutions means even more obscured (literally) operations vs OOM higher costs and diminishing returns on performance in exchange for interpretability and control.
Currently, my best guess is that we’re heading towards a prisoner’s dilemma fueled leap of faith moment within around a decade or so where nation states afraid of the other side beating them to an inflection point pull the trigger on an advancement jump with uncertain outcomes. And while I’m not particularly inclined to the likelihood the outcome ends up being “kill everyone,” I’m pretty much 100% that it’s not going to be “let’s enable and support CCP leadership like a good party member” or “crony capitalism is going great, let’s keep that going for another century.”
Unless a fundamental wall is hit in progress, the status quo is almost certainly over, we just haven’t manifested it yet. The CCP stealing AGI secrets, while devastating for national security in the short term, is invariably a poison pill in the long term for party control. Just as it’s going to be an eventual end of the corporations funding oligarchy in the West. My all causes p(doom) is incredibly high even if AGI is out of the picture, so I’m not overly worried with what’s happening, but it sure is bizarre watching global forces double down on what I cannot see as anything but their own long term institutional demise in a race for short term gains over a competitor.
a dramatic hardware shift like that is likely going to mean a significant portion of progress up until that shift in topics like interpretability and alignment may be going out the window.
It’s still early to tell, as the specific characteristics of a photonic or optoelectronic neural network are still formulating in the developing literature.
For example, in my favorite work of the year so far, the researchers found they could use sound waves to reconfigure an optical neural network as the sound waves effectively preserved a memory of previous photon states as they propagated: https://www.nature.com/articles/s41467-024-47053-6
If you have bidirectionality where previously you didn’t, it’s not a reach to expect that the way in which data might encode in the network, as well as how the vector space is represented, might not be the same. And thus, that mechanistic interpretability gains may get a bit of a reset.
And this is just one of many possible ways it may change by the time the tech finalizes. The field of photonics, particularly for neural networks, is really coming along nicely. There may yet be future advances (I think this is very likely given the pace to date), and advantages the medium offers that electronics haven’t.
It’s hard to predict exactly what’s going to happen when two different fields which have each had unexpected and significant gains over the past 5 years collide, but it’s generally safe to say that it will at very least result in other unexpected things too.
I was surprised the paper didn’t mention photonics or optoelectronics even once.
If looking at 5-10+ year projections, and dedicating pages to discussing the challenges in scaling compute and energy use, the rate of progress in that area in parallel to the progress in models themselves is potentially relevant.
Particularly because a dramatic hardware shift like that is likely going to mean a significant portion of progress up until that shift in topics like interpretability and alignment may be going out the window. Even if the initial shift is a 1:1 transition of capabilities and methodologies, it seems extremely unlikely that continued progress from that point onwards will be identical to what we’d expect to see in electronics.
We may well end up in a situation where fully abusing the efficiencies at hand in new hardware solutions means even more obscured (literally) operations vs OOM higher costs and diminishing returns on performance in exchange for interpretability and control.
Currently, my best guess is that we’re heading towards a prisoner’s dilemma fueled leap of faith moment within around a decade or so where nation states afraid of the other side beating them to an inflection point pull the trigger on an advancement jump with uncertain outcomes. And while I’m not particularly inclined to the likelihood the outcome ends up being “kill everyone,” I’m pretty much 100% that it’s not going to be “let’s enable and support CCP leadership like a good party member” or “crony capitalism is going great, let’s keep that going for another century.”
Unless a fundamental wall is hit in progress, the status quo is almost certainly over, we just haven’t manifested it yet. The CCP stealing AGI secrets, while devastating for national security in the short term, is invariably a poison pill in the long term for party control. Just as it’s going to be an eventual end of the corporations funding oligarchy in the West. My all causes p(doom) is incredibly high even if AGI is out of the picture, so I’m not overly worried with what’s happening, but it sure is bizarre watching global forces double down on what I cannot see as anything but their own long term institutional demise in a race for short term gains over a competitor.
Why is this the case?
It’s still early to tell, as the specific characteristics of a photonic or optoelectronic neural network are still formulating in the developing literature.
For example, in my favorite work of the year so far, the researchers found they could use sound waves to reconfigure an optical neural network as the sound waves effectively preserved a memory of previous photon states as they propagated: https://www.nature.com/articles/s41467-024-47053-6
In particular, this approach is a big step forward for bidirectional ONN, which addresses what I think is the biggest current flaw in modern transformers—their unidirectionality. I discussed this more in a collection of thoughts on directionality impact on data here: https://www.lesswrong.com/posts/bmsmiYhTm7QJHa2oF/looking-beyond-everett-in-multiversal-views-of-llms
If you have bidirectionality where previously you didn’t, it’s not a reach to expect that the way in which data might encode in the network, as well as how the vector space is represented, might not be the same. And thus, that mechanistic interpretability gains may get a bit of a reset.
And this is just one of many possible ways it may change by the time the tech finalizes. The field of photonics, particularly for neural networks, is really coming along nicely. There may yet be future advances (I think this is very likely given the pace to date), and advantages the medium offers that electronics haven’t.
It’s hard to predict exactly what’s going to happen when two different fields which have each had unexpected and significant gains over the past 5 years collide, but it’s generally safe to say that it will at very least result in other unexpected things too.