I’ll bite:
Two textbooks on the level of upper-division undergraduate physics for classical dynamics that I’ve read are:
Classical Dynamics of Particles and Systems by Thornton and Marion
Classical Mechanics by John Taylor
Both cover roughly the same material, but Taylor gives an introduction to fluid mechanics equations in one of the later, optional, chapters that I believe Thornton and Marion do not cover. Thornton-Marion covers gravitation and theory of scalar potentials better.
The two books differ mainly in the way that they present the material. Taylor is very straightforward, easy to understand, and has clear examples with helpful diagrams. Thornton-Marion is very mathematical, requiring at times taking a break to derive a formula in order to follow the discussion. Thornton-Marion is in general less clear for a first read-through or an attempt to refresh if understanding is cloudy, but it excels in the problem sets and worked examples; the problems are very challenging and working through them is a good way to develop an understanding of the material. Taylor’s problems are adequate, but they are not as difficult as Thornton-Marion’s and feel more like textbook problems than the open-ended problems of T-M that are more like what a physicist would encounter.
All in all, however, I would heavily recommend Taylor over Thornton-Marion. It is simply much, much, clearer, gives a better understanding of the topic, and is a pleasure to read. This is especially true if you are learning about the topic for the first time! Thornton-Marion could be useful for studying if you work through problems and have the solutions manual for checking them. If you already know the material well, T-M might be better as a concise reference guide, but Taylor is not shabby as a reference if you know what you are looking for.
I’ll bite: Two textbooks on the level of upper-division undergraduate physics for classical dynamics that I’ve read are:
Classical Dynamics of Particles and Systems by Thornton and Marion
Classical Mechanics by John Taylor
Both cover roughly the same material, but Taylor gives an introduction to fluid mechanics equations in one of the later, optional, chapters that I believe Thornton and Marion do not cover. Thornton-Marion covers gravitation and theory of scalar potentials better.
The two books differ mainly in the way that they present the material. Taylor is very straightforward, easy to understand, and has clear examples with helpful diagrams. Thornton-Marion is very mathematical, requiring at times taking a break to derive a formula in order to follow the discussion. Thornton-Marion is in general less clear for a first read-through or an attempt to refresh if understanding is cloudy, but it excels in the problem sets and worked examples; the problems are very challenging and working through them is a good way to develop an understanding of the material. Taylor’s problems are adequate, but they are not as difficult as Thornton-Marion’s and feel more like textbook problems than the open-ended problems of T-M that are more like what a physicist would encounter.
All in all, however, I would heavily recommend Taylor over Thornton-Marion. It is simply much, much, clearer, gives a better understanding of the topic, and is a pleasure to read. This is especially true if you are learning about the topic for the first time! Thornton-Marion could be useful for studying if you work through problems and have the solutions manual for checking them. If you already know the material well, T-M might be better as a concise reference guide, but Taylor is not shabby as a reference if you know what you are looking for.