For a countable language L and theory T (say, with no finite models), I believe the standard interpretation of “space of all models” is “space of all models with the natural numbers as the underlying set”. The latter is a set with cardinality continuum (it clearly can’t be larger, but it also can’t be smaller, as any non-identity permutation of the naturals gives a non-identity isomorphism between different models).
Moreover this space of models has a natural topology, with basic open sets {M: M models phi} for L-sentences phi, so it makes sense to talk about (Borel) probability measures on this space, and the measures of such sets. (I believe this topology is Polish, actually making the space Borel isomorphic to the real numbers.)
Note that by Lowenheim-Skolem, any model of T admits a countable elementary substructure, so to the extent that we only care about models up to some reasonable equivalence, countable models (hence ones isomorphic to models on the naturals) are enough to capture the relevant behavior. (In particular, as pengvado points out, the Christiano et al paper only really cares about the complete theories realized by models, so models on the naturals suffice.)
For a countable language L and theory T (say, with no finite models), I believe the standard interpretation of “space of all models” is “space of all models with the natural numbers as the underlying set”. The latter is a set with cardinality continuum (it clearly can’t be larger, but it also can’t be smaller, as any non-identity permutation of the naturals gives a non-identity isomorphism between different models).
Moreover this space of models has a natural topology, with basic open sets {M: M models phi} for L-sentences phi, so it makes sense to talk about (Borel) probability measures on this space, and the measures of such sets. (I believe this topology is Polish, actually making the space Borel isomorphic to the real numbers.)
Note that by Lowenheim-Skolem, any model of T admits a countable elementary substructure, so to the extent that we only care about models up to some reasonable equivalence, countable models (hence ones isomorphic to models on the naturals) are enough to capture the relevant behavior. (In particular, as pengvado points out, the Christiano et al paper only really cares about the complete theories realized by models, so models on the naturals suffice.)