« Perfection is achieved, not when there is nothing more to add, but when there is nothing left to take away. » – Antoine de Saint-Exupéry
Remember how the vegetables we eat everyday are very different from their ancestors from a few centuries ago? The same is true for animals. In half a century, farmers bred increasingly large races of chicken. Here is a comparison of the size of bones for modern and ancestral chickens:
The leg on the left belongs to a modern broiler chicken. The one on the right belongs to a wild jungle chicken.
From the perspective of meat production, this is an improvement. From the perspective of animal suffering, things are more uncertain. Contemporary chicken are reaching pantagruelian proportions and now they have trouble walking and their legs often break under their own weight. One might even go as far as worrying this is a little bit unethical. Fortunately, there are solutions. I can think of three of them – the first two, you already know. The last one, however, I never see discussed anywhere.
1. Non-meat
The most fashionable solution now is to replace meat with plant-based construction materials that are claimed to look and taste similar to meat. My main problem is that plant-based meat is, at best, overlapping with real meat: the best-quality plant-meat is comparable to the lowest-quality meat. If you think the vegan burgers make accurate simulacra of meat, I’m afraid you are eating too much heavily processed shitty meat. We are still very far from the impossible® A5-rated wagyu, the impossible® pressed duck, the impossible® volaille de Bresse “en vessie” (which must be gently cooked in a plant-based impossible® pork bladder to be valid). As a typical Westerner, i have the opportunity to eat only about 90,000 meals in a lifetime, there is no way I’m wasting any of them on sub-delicious food. Still, this approach deserves some praise for actually existing and working, which cannot be said about the second approach –
2. Lab-grown meat
To be fair, the interest in lab-grown meat is increasing, slowly and steadily. Perhaps it will eventually catch up on sexbots. Here is a Frontiers review from last year, whose title alone drives the point home: “The Myth of Cultured Meat”. It is not that bad, really, but the current prototypes look like attempts at emulating the vegan attempts at emulating real meat. I don’t see any lab-grown marbled beef appearing in the foreseeable future.
3. Top-down vegan meat
Lab-grown meat was the bottom-up approach. Here, I will inquire into the feasibility of a top-down approach. Rather than starting from cell cultures and engineering them into a sirloin steak, I suggest starting from whole animals and using genetic engineering to remove all the things we find ethically questionable, one by one. Our end goal is, of course, to turn the live animals into warm, squishy, throbbing blocks of flesh devoid of anything that could possibly be construed as qualia. If we can give them a cubic shape for easy packaging and storage, that’s even better.
The path to success is long, but straightforward:
Perhaps the easiest, short-term solution is to make the animals insensitive to pain. We’ve known for a long time that some genetic variants in humans make pain disappear completely. The most famous one, a mutation in the gene SCN9A, was discovered on a Pakistani street performer who would literally eat burning coals and stab himself for the show (he did not live very long). Earlier this year, Moreno et al managed to make mice insensitive to pain using a CRISPR-based epigenome editing scheme (basically, they fused an inactivated Cas9 to a KRAB repressor, so it binds to the DNA just next to the SCN9A gene and inhibits transcription). As we can see from the street performer kid, disrupting the pain sensitivity pathway is totally viable, so I see no technical reason we couldn’t try that on farm animals too.
Of course, pain is not the only form of suffering. If we really want to persuade the PETA activists, we might want to make the animals permanently happy, whatever the circumstances. This is where it gets tricky. I found this genome-wide association study which identifies variants associated to subjective well-being in humans, but it’s not clear whether these variants have a direct effect on happiness, or if they just make you more likely to be rich and handsome. In the later case, it would not be particularly useful for our next-gen farm animals (it can’t hurt, though). It is pretty clear that some genetic variants have a direct effect on personality traits like depression and anxiety, so maybe there is room for action. To optimize happiness in farm animals, we would of course need a way to measure the animals’ subjective well-being, so that’s another obstacle in the way of convincing the vegans (vegans, I’ve been told, can be extremely picky). Also, there is another problem: if we find a way to make animals permanently happy, we might be tempted to apply it to ourselves instead, and then, nobody will care about factory farming anymore.
If removing pain and sadness is not enough, the next logical step is to get rid of consciousness entirely. Any chemical used to induce coma is probably not an option, since we don’t want people to fall into a coma themselves after eating lunch (I’m already close enough to a comatose state after lunch with regular food, let’s not make this worse). A more radical approach is just to remove as much of the nervous system as possible. In humans, there is a rare condition called anencephaly where a fœtus develops without most of the brain, and in particular without a neocortex. It is pretty clear that these kids have no consciousness, yet they can survive for a few hours or even a few days. There is also evidence that some mutations or recessive variants can trigger anencephaly, so the prospect of developing animal lineages without a cerebrum does not seem completely impossible. A major challenge, of course, would be to extend the life of the organism for more than a few hours. Moreover, it would require a lot of effort from the marketing department to make such a monstruosity appealing to consumers.
Sadly, this will not be enough for most vegans. Most of the vegans I personally know put the edibility frontier somewhere between the harp sponge Chondrocladia lyra and the egg-yolk jellyfish Phacellophora camtschatica, that is, anything with a nervous system is formally off-limit. This criterion does not make things easy for our master plan: we can remove as much of the nervous system as we can, I can’t think of any way to get rid of the cardiac automatism or the part of the nervous system in charge of respiratory function. Unless, of course, we dare enter into cyborg territory. Is the world ready for alimentary cyborgs? The future is full of surprises.
Conclusion
Let’s be honest, this post started as fun speculation and gratuitous vegan trolling, but I am actually very serious about the central point. GMOs are mainly discussed in terms of cost, environmental impact or health properties, yet very rarely as an avenue to reduce animal suffering. Many of the ideas discussed here are still beyond what is possible with our current understanding of genetics. Still, we can already identify some interesting research paths that are just waiting to be explored. So, what makes this approach so disturbing? As often, the moral questions turn out more difficult than the technical barriers. The major obstacle is not so much the actual genetic engineering, but the lack of good metrics for success – how do you even measure suffering to begin with? On the other hand, if the outcome of a problem cannot be measured or even defined in any meaningful way, maybe it does not matter that much, after all. I would be happy to hear what ethical vegans think about the general approach. What would it take for a top-down reduction of animal suffering to be acceptable to you?
Is top-down veganism unethical?
Link post
« Perfection is achieved, not when there is nothing more to add, but when there is nothing left to take away. »
– Antoine de Saint-Exupéry
Remember how the vegetables we eat everyday are very different from their ancestors from a few centuries ago? The same is true for animals. In half a century, farmers bred increasingly large races of chicken. Here is a comparison of the size of bones for modern and ancestral chickens:
The leg on the left belongs to a modern broiler chicken. The one on the right belongs to a wild jungle chicken.
From the perspective of meat production, this is an improvement. From the perspective of animal suffering, things are more uncertain. Contemporary chicken are reaching pantagruelian proportions and now they have trouble walking and their legs often break under their own weight. One might even go as far as worrying this is a little bit unethical. Fortunately, there are solutions. I can think of three of them – the first two, you already know. The last one, however, I never see discussed anywhere.
1. Non-meat
The most fashionable solution now is to replace meat with plant-based construction materials that are claimed to look and taste similar to meat. My main problem is that plant-based meat is, at best, overlapping with real meat: the best-quality plant-meat is comparable to the lowest-quality meat. If you think the vegan burgers make accurate simulacra of meat, I’m afraid you are eating too much heavily processed shitty meat. We are still very far from the impossible® A5-rated wagyu, the impossible® pressed duck, the impossible® volaille de Bresse “en vessie” (which must be gently cooked in a plant-based impossible® pork bladder to be valid). As a typical Westerner, i have the opportunity to eat only about 90,000 meals in a lifetime, there is no way I’m wasting any of them on sub-delicious food. Still, this approach deserves some praise for actually existing and working, which cannot be said about the second approach –
2. Lab-grown meat
To be fair, the interest in lab-grown meat is increasing, slowly and steadily. Perhaps it will eventually catch up on sexbots. Here is a Frontiers review from last year, whose title alone drives the point home: “The Myth of Cultured Meat”. It is not that bad, really, but the current prototypes look like attempts at emulating the vegan attempts at emulating real meat. I don’t see any lab-grown marbled beef appearing in the foreseeable future.
3. Top-down vegan meat
Lab-grown meat was the bottom-up approach. Here, I will inquire into the feasibility of a top-down approach. Rather than starting from cell cultures and engineering them into a sirloin steak, I suggest starting from whole animals and using genetic engineering to remove all the things we find ethically questionable, one by one. Our end goal is, of course, to turn the live animals into warm, squishy, throbbing blocks of flesh devoid of anything that could possibly be construed as qualia. If we can give them a cubic shape for easy packaging and storage, that’s even better.
The path to success is long, but straightforward:
Perhaps the easiest, short-term solution is to make the animals insensitive to pain. We’ve known for a long time that some genetic variants in humans make pain disappear completely. The most famous one, a mutation in the gene SCN9A, was discovered on a Pakistani street performer who would literally eat burning coals and stab himself for the show (he did not live very long). Earlier this year, Moreno et al managed to make mice insensitive to pain using a CRISPR-based epigenome editing scheme (basically, they fused an inactivated Cas9 to a KRAB repressor, so it binds to the DNA just next to the SCN9A gene and inhibits transcription). As we can see from the street performer kid, disrupting the pain sensitivity pathway is totally viable, so I see no technical reason we couldn’t try that on farm animals too.
Of course, pain is not the only form of suffering. If we really want to persuade the PETA activists, we might want to make the animals permanently happy, whatever the circumstances. This is where it gets tricky. I found this genome-wide association study which identifies variants associated to subjective well-being in humans, but it’s not clear whether these variants have a direct effect on happiness, or if they just make you more likely to be rich and handsome. In the later case, it would not be particularly useful for our next-gen farm animals (it can’t hurt, though). It is pretty clear that some genetic variants have a direct effect on personality traits like depression and anxiety, so maybe there is room for action. To optimize happiness in farm animals, we would of course need a way to measure the animals’ subjective well-being, so that’s another obstacle in the way of convincing the vegans (vegans, I’ve been told, can be extremely picky). Also, there is another problem: if we find a way to make animals permanently happy, we might be tempted to apply it to ourselves instead, and then, nobody will care about factory farming anymore.
If removing pain and sadness is not enough, the next logical step is to get rid of consciousness entirely. Any chemical used to induce coma is probably not an option, since we don’t want people to fall into a coma themselves after eating lunch (I’m already close enough to a comatose state after lunch with regular food, let’s not make this worse). A more radical approach is just to remove as much of the nervous system as possible. In humans, there is a rare condition called anencephaly where a fœtus develops without most of the brain, and in particular without a neocortex. It is pretty clear that these kids have no consciousness, yet they can survive for a few hours or even a few days. There is also evidence that some mutations or recessive variants can trigger anencephaly, so the prospect of developing animal lineages without a cerebrum does not seem completely impossible. A major challenge, of course, would be to extend the life of the organism for more than a few hours. Moreover, it would require a lot of effort from the marketing department to make such a monstruosity appealing to consumers.
Sadly, this will not be enough for most vegans. Most of the vegans I personally know put the edibility frontier somewhere between the harp sponge Chondrocladia lyra and the egg-yolk jellyfish Phacellophora camtschatica, that is, anything with a nervous system is formally off-limit. This criterion does not make things easy for our master plan: we can remove as much of the nervous system as we can, I can’t think of any way to get rid of the cardiac automatism or the part of the nervous system in charge of respiratory function. Unless, of course, we dare enter into cyborg territory. Is the world ready for alimentary cyborgs? The future is full of surprises.
Conclusion
Let’s be honest, this post started as fun speculation and gratuitous vegan trolling, but I am actually very serious about the central point. GMOs are mainly discussed in terms of cost, environmental impact or health properties, yet very rarely as an avenue to reduce animal suffering. Many of the ideas discussed here are still beyond what is possible with our current understanding of genetics. Still, we can already identify some interesting research paths that are just waiting to be explored. So, what makes this approach so disturbing? As often, the moral questions turn out more difficult than the technical barriers. The major obstacle is not so much the actual genetic engineering, but the lack of good metrics for success – how do you even measure suffering to begin with? On the other hand, if the outcome of a problem cannot be measured or even defined in any meaningful way, maybe it does not matter that much, after all. I would be happy to hear what ethical vegans think about the general approach. What would it take for a top-down reduction of animal suffering to be acceptable to you?