What can we say about the K-complexity of a non-random string from our universe, e.g. the text of Finnegans Wake? It contains lots of patterns making it easy to compress using a regular archiver, but can we do much better than that?
On one hand, the laws of physics in our universe seem to be simple, and generating the text is just a matter of generating our universe then pointing to the text. On the other hand, our evolution involved a lot of quantum randomness, so pointing to humans within the universe could require a whole lot of additional bits above and beyond the laws of physics. So does anyone have good arguments whether the K-complexity of Finnegans Wake is closer to 10% or 0.1% of its length?
K-complexity of everyday things
What can we say about the K-complexity of a non-random string from our universe, e.g. the text of Finnegans Wake? It contains lots of patterns making it easy to compress using a regular archiver, but can we do much better than that?
On one hand, the laws of physics in our universe seem to be simple, and generating the text is just a matter of generating our universe then pointing to the text. On the other hand, our evolution involved a lot of quantum randomness, so pointing to humans within the universe could require a whole lot of additional bits above and beyond the laws of physics. So does anyone have good arguments whether the K-complexity of Finnegans Wake is closer to 10% or 0.1% of its length?