Yes, in practice people resort to less motivated methods that work well.
I’d really like to see some principled answer that has the same feel as Bayesianism though. As it stands, I have no problem using Bayesian methods for parameter estimation. This is natural because we really are getting pdf(parameters | data, model). But for model selection and evaluation (i.e. non-parametric Bayes) I always feel that I need an “escape hatch” to include new models that the Bayes formalism simply doesn’t have any place for.
Yes, in practice people resort to less motivated methods that work well.
I’d really like to see some principled answer that has the same feel as Bayesianism though. As it stands, I have no problem using Bayesian methods for parameter estimation. This is natural because we really are getting pdf(parameters | data, model). But for model selection and evaluation (i.e. non-parametric Bayes) I always feel that I need an “escape hatch” to include new models that the Bayes formalism simply doesn’t have any place for.
I feel the same way.