I still don’t get this “only one thing in awareness” thing. There are multiple neurons in cortex and I can imagine two apples—in what sense there can only be one thing in awareness?
Or equivalently, it corresponds equally well to two different questions about the territory, with two different answers, and there’s just no fact of the matter about which is the real answer.
Obviously the real answer is the model which is more veridical^^. The latter hindsight model is right not about the state of the world at t=0.1, but about what you thought about the world at t=0.1 later.
I still don’t get this “only one thing in awareness” thing. There are multiple neurons in cortex and I can imagine two apples—in what sense there can only be one thing in awareness?
One thought in awareness! Imagining two apples is a different thought from imagining one apple, right? They’re different generative models, arising in different situations, with different implications, different affordances, etc. Neither is a subset of the other. (I.e., there are things that I might do or infer in the context of one apple, that I would not do or infer in the context of two apples.)
I can have a song playing in my head while reading a legal document. That’s because those involve different parts of the cortex. In my terms, I would call that “one thought” involving both a song and a legal document. On the other hand, I can’t have two songs playing in my head simultaneously, nor can I be thinking about two unrelated legal documents simultaneously. Those involve the same parts of the cortex being asked to do two things that conflict. So instead, I’d have to flip back and forth.
There are multiple neurons in the cortex, but they’re not interchangeable. Again, I think autoassociative memory / attractor dynamics is a helpful analogy here. If I have a physical instantiation of a Hopfield network, I can’t query 100 of its stored patterns in parallel, right? I have to do it serially.
I don’t pretend that I’m offering a concrete theory of exactly what data format a “generative model” is etc., such that song-in-head + legal-contract is a valid thought but legal-contract + unrelated-legal-contract is not a valid thought. …Not only that, but I’m opposed to anyone else offering such a theory either! We shouldn’t invent brain-like AGI until we figure out how to use it safely, and those kinds of gory details would be getting uncomfortably close, without corresponding safety benefits, IMO.
On the other hand, I can’t have two songs playing in my head simultaneously,
Tangent: I play at irish sessions, and one of the things you have to do there is swap tunes. If you lead a transition you have to be imagining the next tune you’re going to play at the same time as you’re playing the current tune. In fact, often you have to decide on the next tune on the fly. This us a skill that takes some time to grok. You’re probably conceptualizing the current and future tunes differently, but there’s still a lot of overlap—you have to keep playing in sync with other people the entire time, while at the same time recalling and anticipating the future tune.
Imagining two apples is a different thought from imagining one apple, right?
I mean, is it? Different states of the whole cortex are different. And the cortex can’t be in a state of imagining only one apple and, simultaneously, be in a state of imagining two apples, obviously. But it’s tautological. What are we gaining from thinking about it in such terms? You can say the same thing about the whole brain itself, that it can only have one brain-state in a moment.
I guess there is a sense in which other parts of the brain have more various thoughts relative to what cortex can handle, but, like you said, you can use half of cortex capacity, so why not define song and legal document as different thoughts?
As abstract elements of provisional framework cortex-level thoughts are fine, I just wonder what are you claiming about real constrains, aside from “there limits on thoughts”. because, for example, you need other limits anyway—you can’t think arbitrary complex thought even if it is intuitively cohesive. But yeah, enough gory details.
On the other hand, I can’t have two songs playing in my head simultaneously, nor can I be thinking about two unrelated legal documents simultaneously.
I can’t either, but I don’t see just from the architecture why it would be impossible in principle.
Again, I think autoassociative memory / attractor dynamics is a helpful analogy here. If I have a physical instantiation of a Hopfield network, I can’t query 100 of its stored patterns in parallel, right? I have to do it serially.
Yes, but you can theoretically encode many things in each pattern? Although if your parallel processes need different data, one of them will have to skip some responses… Would be better to have different networks, but I don’t see brain providing much isolation. Well, it seems to illustrate complications of parallel processing that may played a role in humans usually staying serial.
You say “tautological”, I say “obvious”. You can’t parse a legal document and try to remember your friend’s name at the exact same moment. That’s all I’m saying! This is supposed to be very obvious common sense, not profound.
What are we gaining from thinking about it in such terms?
Consider the following fact:
FACT: Sometimes, I’m thinking about pencils. Other times, I’m not thinking about pencils.
Now imagine that there’s a predictive (a.k.a. self-supervised) learning algorithm which is tasked with predicting upcoming sensory inputs, by building generative models. The above fact is very important! If the predictive learning algorithm does not somehow incorporate that fact into its generative models, then those generative models will be worse at making predictions. For example, if I’m thinking about pencils, then I’m likelier to talk about pencils, and look at pencils, and grab a pencil, etc., compared to if I’m not thinking about pencils. So the predictive learning algorithm is incentivized (by its predictive loss function) to build a generative model that can represent the fact that any given concept might be active in the cortex at a certain time, or might not be.
Again, this is all supposed to sound very obvious, not profound.
You can say the same thing about the whole brain itself, that it can only have one brain-state in a moment.
Yes, it’s also useful for the predictive learning algorithm to build generative models that capture other aspects of the brain state, outside the cortex. Thus we wind up with intuitive concepts that represent the possibility that we can be in one mood or another, that we can be experiencing a certain physiological reaction, etc.
I still don’t get this “only one thing in awareness” thing. There are multiple neurons in cortex and I can imagine two apples—in what sense there can only be one thing in awareness?
Obviously the real answer is the model which is more veridical^^. The latter hindsight model is right not about the state of the world at t=0.1, but about what you thought about the world at t=0.1 later.
One thought in awareness! Imagining two apples is a different thought from imagining one apple, right? They’re different generative models, arising in different situations, with different implications, different affordances, etc. Neither is a subset of the other. (I.e., there are things that I might do or infer in the context of one apple, that I would not do or infer in the context of two apples.)
I can have a song playing in my head while reading a legal document. That’s because those involve different parts of the cortex. In my terms, I would call that “one thought” involving both a song and a legal document. On the other hand, I can’t have two songs playing in my head simultaneously, nor can I be thinking about two unrelated legal documents simultaneously. Those involve the same parts of the cortex being asked to do two things that conflict. So instead, I’d have to flip back and forth.
There are multiple neurons in the cortex, but they’re not interchangeable. Again, I think autoassociative memory / attractor dynamics is a helpful analogy here. If I have a physical instantiation of a Hopfield network, I can’t query 100 of its stored patterns in parallel, right? I have to do it serially.
I don’t pretend that I’m offering a concrete theory of exactly what data format a “generative model” is etc., such that song-in-head + legal-contract is a valid thought but legal-contract + unrelated-legal-contract is not a valid thought. …Not only that, but I’m opposed to anyone else offering such a theory either! We shouldn’t invent brain-like AGI until we figure out how to use it safely, and those kinds of gory details would be getting uncomfortably close, without corresponding safety benefits, IMO.
Tangent: I play at irish sessions, and one of the things you have to do there is swap tunes. If you lead a transition you have to be imagining the next tune you’re going to play at the same time as you’re playing the current tune. In fact, often you have to decide on the next tune on the fly. This us a skill that takes some time to grok. You’re probably conceptualizing the current and future tunes differently, but there’s still a lot of overlap—you have to keep playing in sync with other people the entire time, while at the same time recalling and anticipating the future tune.
I mean, is it? Different states of the whole cortex are different. And the cortex can’t be in a state of imagining only one apple and, simultaneously, be in a state of imagining two apples, obviously. But it’s tautological. What are we gaining from thinking about it in such terms? You can say the same thing about the whole brain itself, that it can only have one brain-state in a moment.
I guess there is a sense in which other parts of the brain have more various thoughts relative to what cortex can handle, but, like you said, you can use half of cortex capacity, so why not define song and legal document as different thoughts?
As abstract elements of provisional framework cortex-level thoughts are fine, I just wonder what are you claiming about real constrains, aside from “there limits on thoughts”. because, for example, you need other limits anyway—you can’t think arbitrary complex thought even if it is intuitively cohesive. But yeah, enough gory details.
I can’t either, but I don’t see just from the architecture why it would be impossible in principle.
Yes, but you can theoretically encode many things in each pattern? Although if your parallel processes need different data, one of them will have to skip some responses… Would be better to have different networks, but I don’t see brain providing much isolation. Well, it seems to illustrate complications of parallel processing that may played a role in humans usually staying serial.
You say “tautological”, I say “obvious”. You can’t parse a legal document and try to remember your friend’s name at the exact same moment. That’s all I’m saying! This is supposed to be very obvious common sense, not profound.
Consider the following fact:
FACT: Sometimes, I’m thinking about pencils. Other times, I’m not thinking about pencils.
Now imagine that there’s a predictive (a.k.a. self-supervised) learning algorithm which is tasked with predicting upcoming sensory inputs, by building generative models. The above fact is very important! If the predictive learning algorithm does not somehow incorporate that fact into its generative models, then those generative models will be worse at making predictions. For example, if I’m thinking about pencils, then I’m likelier to talk about pencils, and look at pencils, and grab a pencil, etc., compared to if I’m not thinking about pencils. So the predictive learning algorithm is incentivized (by its predictive loss function) to build a generative model that can represent the fact that any given concept might be active in the cortex at a certain time, or might not be.
Again, this is all supposed to sound very obvious, not profound.
Yes, it’s also useful for the predictive learning algorithm to build generative models that capture other aspects of the brain state, outside the cortex. Thus we wind up with intuitive concepts that represent the possibility that we can be in one mood or another, that we can be experiencing a certain physiological reaction, etc.